FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of l-cysteine.
نویسندگان
چکیده
A simple and low cost detection of l-cysteine is essential in the fields of biosensors and medical diagnosis. In this study, we have developed a simple electrospinning, followed by calcination process to prepare FeCo nanoparticles embedded in carbon nanofibers (FeCo-CNFs) as an efficient peroxidase-like mimic for the detection of l-cysteine. FeCo nanoparticles are uniformly dispersed within CNFs, and their diameters are highly influenced by the calcination temperature. The calcination temperature also influences the peroxidase-like catalytic activity, and the maximum activity is achieved at a calcination temperature of 550 °C. Owing to the high catalytic activity of the as-prepared FeCo-CNFs, a colorimetric technique for the rapid and accurate determination of l-cysteine has been developed. The detection limit is about 0.15 μM with a wide linear range from 1 to 20 μM. In addition, a high selectivity for the detection of l-cysteine over other amino acids, glucose and common ions is achieved. This study provides a simple, rapid and sensitive sensing platform for the detection of l-cysteine, which is a promising candidate for potential applications in biosensing, medicine, environmental monitoring.
منابع مشابه
Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose
Nanozyme-based colorimetric sensors have received considerable attention due to their unique properties. The size, shape, and surface chemistry of these nanozymes could dramatically influence their sensing behaviors. Herein, a comparative study of VO₂ nanoparticles with different morphologies (nanofibers, nanosheets, and nanorods) was conducted and applied to the sensitive colorimetric detectio...
متن کاملFluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing
The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can ...
متن کاملSensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
We report herein the development of a highly sensitive and selective colorimetric detection method for cysteine using gold nanoparticles probes. This assay relies upon the distance-dependent optical properties of gold nanoparticles, the self-assembly of cysteine on gold nanoparticles, and the interaction of a 2:1 cysteine/Cu2+ complex. In the presence of Cu2+, cysteine could rapidly induce the ...
متن کاملPreparation and characterization of a carbon-based magnetic nanostructure via co-precipitation method: Peroxidase-like activity assay with 3,3ʹ,5,5ʹ-tetramethylbenzidine
Objective(S): Natural and artificial enzymes have shown important roles in biotechnological processes. Recently, design and synthesis of artificial enzymes especially peroxidase mimics has been interested by many researchers. Due to disadvantages of natural peroxidases, there is a desirable reason of current research interest in artificial peroxidase mimics. Metho...
متن کاملBSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics.
Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 46 28 شماره
صفحات -
تاریخ انتشار 2017